## Exam Kaleidoscope of Modern Physics

3 November 2015, 14:00-17:00

- Put your name and student number on each answer sheet.
- Answer all questions short and to the point, but complete; write legible.
- Use of a calculator is  $\underline{not}$  allowed.
- Final grade = total number of points/10 + 1

NAME : ...... STUDENT NUMBER : .....

- 1. Read the following propositions carefully and indicate if they are true (T) or false (F) by checking the appropriate box. (15 points)
- $\mathbf{T}\square \mathbf{F}\square$  According to the de Broglie relation, the higher the momentum, the shorter the wavelength. TRUE, the de Broglie relation states that  $\lambda = h/p$ , with  $\lambda$  the wavelength, p the momentum and h Planck's constant.
- $\mathbf{T}\square \mathbf{F}\square$  The wave nature of particles mainly shows up when the particle has a small energy or when considered at small length scales. TRUE, the de Broglie wavelength of a particle is either very short and thus only visible at small length scales. At smaller energies, the wavelength is longer and thus also visible at larger length scales.
- $\mathbf{T}\square \mathbf{F}\square$  Although the energy of an electron bound in an atom can only take discrete values, the corresponding photon emission spectrum may be continuous. FALSE, photons get emitted when the electron jumps from one state to another. Energy conservation dictates that the photon carries away the difference in electron energy, which is thus also discrete.
- $\mathbf{T}\square \mathbf{F}\square$  Photons with a wavelength of 410 nm have a higher energy than photons with a wavelength of 750 nm.

TRUE, the energy of a photon is given by  $E = hc/\lambda$ , with  $\lambda$  the wavelength.

- $\mathbf{T}\square \mathbf{F}\square$  If an electron and a proton travel at the same speed, the proton has a shorter wavelength because the proton is much heavier than the electron. TRUE, the de Broglie wavelength is defined as  $\lambda = h/p = h/(m \cdot v)$ . If the velocity is the same, but the mass larger, the momentum is larger and hence the wavelength shorter.
- $\mathbf{T}\square \mathbf{F}\square$  It is impossible to measure exactly where a particle is, unless it is at rest. FALSE, the uncertainty relation states that if a particle has a well defined momentum and hence velocity, the position uncertainty becomes large.
- $\mathbf{T}\square \mathbf{F}\square$  A probability amplitude can be negative. TRUE, the probability amplitude is given by a complex number and can taken any value, positive and negative, as well as imaginary and any combination.
- $\mathbf{T}\square \mathbf{F}\square$  Using Quantum Mechanics you can very precisely calculate the probability for some event, but you cannot predict when an event will actually happen. TRUE, all you can do is calculate the probability, not the actual moment of occurence.

- $\mathbf{T}\square \mathbf{F}\square$  A free particle with a precisely defined momentum has a poorly defined location. TRUE, this is a consequence of the uncertainty principle,  $\Delta p \cdot \Delta x \ge \hbar/2$ .
- $\mathbf{T} \square \mathbf{F} \square \text{ A wavefunction must be normalized according to } \int_{\text{all space}} \psi(x) dx = 1.$ FALSE, the probability density  $P(x) = |\psi(x)|^2$  should be normalised, and hence  $\int_{\text{all space}} |\psi(x)|^2 dx = 1.$
- $\mathbf{T}\square \mathbf{F}\square$  If Planck's constant were a lot larger, we would eventually notice quantum effects in every day life.

TRUE, the magnitude of quantum effects is related to the magnitude of Planck's constant.

- $\mathbf{T}\square \mathbf{F}\square$  The photon energies for transitions to the n = 1 state in a hydrogen atom are generally larger than those for transitions to the n = 2 state. TRUE, the photon energy is determined by the difference of the energy of the initial electron state and that of the final electron state. The energies of the initial states are essentially the same, but the energies of the final state quite different. For n = 1 this energy is much lower, than for n = 2.
- $\mathbf{T}\square \mathbf{F}\square$  Materials with a larger work function require photons with longer wavelengths to release an electron via the photoelectric effect. FALSE, if the work function is larger, photons need to have a higher energy to release an electron. Higher energy means a smaller wavelength.
- $\mathbf{T}\square \mathbf{F}\square$  If nothing else changes, the zero-point energy of a wider box is smaller than that of a narrower box. TRUE, for a wider box, the wavefunction can have a larger wavelength, and hence a lower energy.
- **T** $\square$  **F** $\square$  Without Pauli's exclusion principle, all atomic electrons would occupy the  $n = 1, l = 0, m_l = 0$  state.

TRUE; then electron could share the same quantum numbers.

 $\mathbf{T}\square \mathbf{F}\square$  The energy of an electron in an atom is primarily determined by the orbital quantum number l.

FALSE; it is mainly the principal quantum number n that determines the energies.

- $\mathbf{T}\square \mathbf{F}\square$  The energies of the electron states in an atom scale with  $1/Z^2$ , with Z the charge of the nucleus. FALSE; it scales as  $Z^2$ .
- **T** $\square$  **F** $\square$  A subshell can contain 2(2l + 1) electrons. TRUE; a sub-shell is defined by electrons sharing a particular value of n and l. In a subshell  $m_l$  can take (2l + 1) values, and  $m_s$  two, totalling 2(2l + 1) possible states.
- $\mathbf{T}\square \mathbf{F}\square$  A shell can contain  $2n^2$  electrons. TRUE; a shell is defined as the collection of states that share the same value of n. For the same n, l can take a value from zero to n-1 (forming a sub-shell). Then refer to the previous question.
- $\mathbf{T}\square \mathbf{F}\square$  For noble gases in the ground state all electronic shells are full. TRUE; this defines noble gases.
- $\mathbf{T}\square \mathbf{F}\square$  A molecule primarily held together by the attraction between the nuclei to the electron cloud between them is said to have an ionic bond. FALSE; this is a covalent bond.

- $\mathbf{T}\square \mathbf{F}\square$  Burning gasoline releases more energy than burning wood. The activation energy for burning gasoline is thus larger than for burning wood. FALSE; activation energy is a reaction threshold. The binding energy determines the energy release.
- $\mathbf{T}\square \mathbf{F}\square$  For a semiconductor the valence band is completely filled, just like for an insulator. TRUE; the only difference is the size of the band gap.
- $\mathbf{T}\square \mathbf{F}\square$  The electrons in a metal are not subject to the exclusion principle. FALSE; they are fermions and thus always have to obey the exclusion principle.
- $\mathbf{T}\square \mathbf{F}\square$  Isotopes have the same number of protons. TRUE; by definition.
- $\mathbf{T}\square \mathbf{F}\square$  Isotones have the same chemical properties. FALSE; isotones share the same number of neutrons. The chemical properties are determined by the number of electrons, which is equal to the number of protons.
- $\mathbf{T}\square \mathbf{F}\square$  Protons and neutrons are fermions. TRUE; both have spin-1/2.
- $\mathbf{T}\square \mathbf{F}\square$  An atomic nucleus contains almost all the mass of an atom. TRUE; electrons are about 2000 times lighter than protons, of which there are an equal number. And there are typically a similar number of neutrons, which have a similar weight as protons.
- $\mathbf{T}\square \mathbf{F}\square$  In an elastic scattering experiment the particles in the initial and final state are the same. TRUE; by definition.
- $\mathbf{T}\square \mathbf{F}\square$  All isotopes heavier than Iron-56 can fission spontaneously. FALSE; that depends on the Q-valu.
- T□ F□ The binding energy of an electron in an atom is of order 1/1,000<sup>th</sup> of that of a proton or neutron in a nucleus. FALSE; atomic binding energies are of order 10 – 100 eV. Nuclear binding energies are of order 10 MeV.
- $\mathbf{T}\square \mathbf{F}\square$  The strong nuclear force has infinity range. FALSE; from the approximate constancy of the binding energy per nucleon it follows that the nucleons don't "see" all the other nucleons in a nucleus. This is only possible if the range of the force is limited.
- $\mathbf{T}\square \mathbf{F}\square$  A radioactive nucleus has less mass than the combination of particles and nuclei it decays into.

FALSE; to be radioactive the nucleus must decau spontaneously, and for this a mass-excess, Q > 0, is necessary. This means that a radioactive nucleus is *heavier* that its daughters.

- **T**□ **F**□ Spontaneous decay requires a Q-value smaller than zero. FALSE; Q > 0.
- **T** $\square$  **F** $\square$  In  $\alpha$ -decay N and Z will change, but A remains the same. FALSE; the total number of nucleons goes down by 4.
- $\mathbf{T}\square \mathbf{F}\square$  In two-body decay the kinetic energies of the daughters are discrete; in three-body decay they are continuous.

TRUE; several combination of momenta and their relative orientation can guarantee energy and momentum conservation.

- T□ F□ After one half-life 50% of a radioactive substance has disappeared; after two half-lives 100% is gone.
   FALSE; after two half-lives 50% + 50% of the remaining 50% has decayed. So 25% is still left over.
- $\mathbf{T}\square \mathbf{F}\square$  It is possible to find natural (*i.e.* not man-made) short-lived isotopes on earth, of which the lifetime is much shorter than the age of the earth. TRUE; they could be produced in the decay chain of a longer living isotope.
- $\mathbf{T}\square \mathbf{F}\square$  Gluons are the particles associated with the strong interaction between quarks. TRUE;
- $\mathbf{T}\square \mathbf{F}\square$  The weak interaction is only weak at large distances; at (very) short distances it is about as strong as the electromagnetic interaction. TRUE; the weakness is caused by the large mass of the transmitting boson.
- $\mathbf{T}\square \mathbf{F}\square$  A particle and its antiparticle have precisely the same mass. TRUE; only the other properties have opposite values.
- $\mathbf{T}\square \mathbf{F}\square$  Neutrinos only interact via the weak interaction. TRUE
- $\mathbf{T}\square \mathbf{F}\square$  "Color" is like the electric charge, but then for the weak interaction. FALSE; color is the "charge" for the strong interaction.

- 2. Consider a particle with mass m in a one-dimensional rigid box with width w. (12 points)
  - a) Formulate the de Broglie relation showing how the wavelength and the momentum p = mv of a particle are related. The de Broglie relation states that the wavelength and the momentum are inversely proportional, with Planck's constant as the proportionallity constant. So  $\lambda = h/p = h/(m \cdot v)$ .
  - b) What condition does the wavefunction have to meet at the wall of the box? Briefly explain. A particle in a rigid box cannot be outside the box. Because the square of (the norm of) the wavefunction gives the probability (density) to be at some location, the wavefunction has to be zero outside the box, and thus also at the wall. Only inside the box the wavefunction can (must) have non-zero values.
  - c) Explain why only discrete values of the particle energy are allowed. *Hint:* use that  $E = p^2/2m$ . A whole number of half-waves have to fit in between the two walls, because only then the wavefunction can be zero at both walls. This means that only a discrete number of wavelengths are actually allowed inside the box, namely those for which  $n \cdot \lambda/2 = w$ , with n an integer number. Because of the de Broglie relation, this means that also the momentum can only have specific discrete values and therefore also  $E = p^2/2m$ .
  - d) What is the interpretation of the wave function? As in the book: The square of the norm of the wave function,  $|\Psi|^2$ , at a certain point in space and time represents the probability (density) of finding the electron (better: physical system) at the given position and time (better: in a given state).
- 3. Use dimensional analysis to find the relation between the force F (in N = kg·m/s<sup>2</sup>) needed to keep a ball with mass M at the end of a piece of string with length R and going around with velocity V. (12 points)

We have to find the way the force F depends on M, R and V. Assume therefore that

$$F = M^{\alpha} R^{\beta} V^{\gamma}.$$

As the force is given in Newton  $(1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2)$ , the dimension of the lefthand side of the equation is  $[\text{mass}][\text{length}]/[\text{time}]^2$ . The righthand side has dimension

$$[\text{mass}]^{\alpha} [\text{length}]^{\beta} ([\text{length}]/[\text{time}])^{\gamma}.$$

To match the mass dimension,  $\alpha = 1$ . To match the time dimension,  $\gamma = 2$ . This brings in a length-squared, so  $\beta = -1$ , giving the solution

$$F = M \cdot V^2 / R$$



- 4. Atomic Physics : (12 points)
  - a) How many electrons are there in a chlorine atom (Cl)? And in a sodium atom (Na)? From the periodic system in the appendix: Na: 11, Cl: 17
  - b) Use the appendix "Sodium and Chlorine energy levels". (i) Indicate for the left and right spectrum which one represents Na and which Cl. Distribute the number of electrons found in a)<sup>1</sup> over the available states to form each atom in its ground state. Indicate for each state (*ii*) how many electrons it holds (if more than zero) and (*iii*) label the corresponding state (as in the bottom left corner) (*iv*) give the complete electron configuration for Na and Cl. The (single-electron) energies in an atom scale as  $Z^2$ , so that of Cl are larger (in absolute sense). So the left scheme belongs to Cl, the right to Na. The Na system has 2 electrons in the 1S state, 2 in the 2S, 6 in 2P, and 1 in 3S. Cl is 1s2 2s2 2p6 3s2 3p5.
  - c) If you would knock out one of the electrons in the 1s shell, X-rays are emitted. Explain how the wavelength of this X-ray can be used to identify the emitting atom. One of the other atomic electrons would make a jump to fill the vacancy, and emit a photon with an energy that is equal to the difference in the energy levels. The level spacing in Na and Cl are different, and hence photons with different energies are emitted. The 1S state of Cl is more strongly bound, so for Cl the emitted photons have shorter wavelengths than for Na.

<sup>&</sup>lt;sup>1</sup>If you don't know the answer, take a number anywhere between 10 and 20.

- 5. Nuclear Physics & Radioactivity: (12 points)
  - a) Which two interactions determine the binding energy of an atomic nucleus? Indicate for each interaction whether it is attractive, repulsive or absent for pp, pn, and nn pairs. Use these observations to explain why very heavy nuclei generally have N > Z, while light ones have  $N \simeq Z$ .

The two relevant interactions are the EM and strong nuclear interaction (SNI). The SNI is attractive for all three pairs. The EM interaction is only repulseive for a pp pair, and absent for the other two. The binding energy per nucleon due to the electromagnetic respulsion grows with Z, whereas the energy per nucleon due to the strong interaction is approximately constant. To compensate for the loss in binding for larger Z addition neutron are needed to increase the distance between the protons, and hence lower the repulsion.

- b) Briefly explain the principle of <sup>14</sup>C-dating. Can it be used for dating: (i) wine, (ii) rock walls of an old civilization, (iii) wall paintings of homo sapiens, (iv) dinosaur bones? Why (not)?
  I. Carbon-14 is continuously produced in the upper atmosphere by cosmic radiation. It is absorbed by living organisms and incorported into their system. Once they die, the intake of C-14 stops and the accumulated amount slowly drops because of radioactive decay. C-14 has a halflife of about 6000 years. II. i wine: consists of grapes, which accumulate C-14 while they are on the plant. Wine is kept in closed bottles, thus no new carbon is accumulated. Hence it can be carbon-dated. ii rock walls: do not "grow" and hence do not accumulate C-14 during their "life". Hence: no. iii wall paintings: if the used paint is organic (plants, ashes), then yes, otherwise: no. After-the-fact accumulation may affect the result though. iv dinosaur bones can in principle be radio-dated, because they contain carbon, but they are much older than the half-life, so: no.
- c) Write down the reaction equations for the following processes (identify all particles involved!):  $\beta^{-}$  decay of  ${}^{200}_{78}$ Pt; electron capture of  ${}^{163}_{67}$ Ho;  $\alpha$  decay of  ${}^{8}_{4}$ Be.  $\beta^{-}$ : A remains the same, Z goes up by 1:  ${}^{200}_{78}$ Pt  $\rightarrow {}^{200}_{79}$  Au+ $e^{-} + \bar{\nu}_e$ ; Electron capture: equivalent to  $\beta^{+}$  decay,  ${}^{163}_{67}$ Ho +  $e^{-} \rightarrow {}^{163}_{66}$  Dy +  $\nu_e$ ; a neutrino is generated;  $\alpha$  decay: A goes down by 4, Z by 2,  ${}^{8}_{4}$ Be  $\rightarrow {}^{4}_{2}$  He +  $\alpha$  (or  $2\alpha$ ).
- 6. Particle Physics : (12 points)
  - a) Name the four fundamental interactions and the corresponding carrier bosons. What makes the weak interaction "weak"? Strong, gluons; EM, photons; Weak, W<sup>+</sup>, W<sup>-</sup>, Z; Gravity, gravitons. The weak interaction is weak because the mass of the W and Z boson are so large. This makes the range of the WI very short, and thus very weak.
  - b) Which (kinds of) fundamental fermions are subject to the strong interaction? Electromagnetic interaction? Weak interaction?
     SL only the quarker EM: quarker and charged leptons: Weak, all particles.

SI: only the quarks; EM: quarks and charged leptons; Weak: all particles.

c) Put the following systems in the correct order of their first appearance after the Big Bang: deuterium nucleus, electron, helium atom, DNA molecule, neutron, star. Motivate your ordering, using *e.g.* temperature or the strenght of the various forces binding the object.

**I.** electron: this is an elementary particles that can be created immediately after the Big Bang. No binding is required, so these particles can have high energies;

**II.** neutron: requires the binding of quarks using the strong force. The temperature needs to be low enough that the kinetic energy is smaller than the binding energy;

III. deuterium nucleus: requires the binding between a proton and a neutron, which thus first

have to be formed. Nuclear binding energies are of order MeV (here it's 2.2 MeV), which has to be below the thermal energy of the protons and neutrons;

**IV.** helium atom: electrons and nuclei are bound into an atom due to the electromagnetic interaction. Typical binding energies are of order eV, with correspondingly lower temperature.

**V.** star: may consist of hydrogen atoms, bound by the gravitational attaction. Binding is exceedingly weak ( $10^{36}$  times weaker than the EM interaction), hence star formation can only occur once the temperature of the universe has dropped a lot.

**VI.** DNA molecule: requires heavy elements formed in supernovae to accumulate on a cold planet such that complicated molecular processes can take place.

7. Fermi problem: (15 points)

How far away could you be from the nearest windmill if the Netherlands would produce all its electricity from windmills on land?

Many answers possible. Items to address include: estimation of energy needs in the Netherlands (approx. 1 kW/household), population of the Netherlands (17 million), power output of a windmill (typically 1 MW), size of the Netherlands (33,000 km<sup>2</sup>).



## Fundamental Constants

| Quantity                   | Symbol                                 | Approximate Value                                                                                                                   | Current Best Value <sup>†</sup>                                                         |
|----------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Speed of light in vacuum   | С                                      | $3.00 \times 10^8  { m m/s}$                                                                                                        | $2.99792458 \times 10^8 \mathrm{m/s}$                                                   |
| Gravitational constant     | G                                      | $6.67 	imes 10^{-11}  \mathrm{N} \cdot \mathrm{m}^2 / \mathrm{kg}^2$                                                                | $6.6728(67) \times 10^{-11} \mathrm{N \cdot m^2/kg^2}$                                  |
| Avogadro's number          | $N_{\rm A}$                            | $6.02 \times 10^{23} \mathrm{mol}^{-1}$                                                                                             | $6.02214179(30) \times 10^{23} \mathrm{mol}^{-1}$                                       |
| Gas constant               | R                                      | $8.314 \text{ J/mol} \cdot \text{K} = 1.99 \text{ cal/mol} \cdot \text{K}$ $= 0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$ | 8.314472(15) J/mol·K                                                                    |
| Boltzmann's constant       | k                                      | $1.38	imes10^{-23}\mathrm{J/K}$                                                                                                     | $1.3806504(24) \times 10^{-23} \mathrm{J/K}$                                            |
| Charge on electron         | е                                      | $1.60 	imes 10^{-19} \mathrm{C}$                                                                                                    | $1.602176487(40) \times 10^{-19} \mathrm{C}$                                            |
| Stefan-Boltzmann constant  | $\sigma$                               | $5.67 	imes 10^{-8}  \mathrm{W/m^2 \cdot K^4}$                                                                                      | $5.670400(40) \times 10^{-8} \mathrm{W/m^2 \cdot K^4}$                                  |
| Permittivity of free space | $\epsilon_0 = \left(1/c^2\mu_0\right)$ | $8.85 	imes 10^{-12} \mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$                                                                    | $8.854187817 \dots \times 10^{-12} \mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$          |
| Permeability of free space | $\mu_0$                                | $4\pi	imes 10^{-7}{ m T}\cdot{ m m/A}$                                                                                              | $1.2566370614 \times 10^{-6} \mathrm{T} \cdot \mathrm{m/A}$                             |
| Planck's constant          | h                                      | $6.63 	imes 10^{-34}  { m J} \cdot { m s}$                                                                                          | $6.62606896(33) \times 10^{-34} \mathrm{J}\cdot\mathrm{s}$                              |
| Electron rest mass         | m <sub>e</sub>                         | $9.11 \times 10^{-31} \text{ kg} = 0.000549 \text{ u}$<br>= 0.511 MeV/ $c^2$                                                        | $9.10938215(45) \times 10^{-31} \text{ kg} = 5.4857990943(23) \times 10^{-4} \text{ u}$ |
| Proton rest mass           | mp                                     | $1.6726 \times 10^{-27} \text{ kg} = 1.00728 \text{ u}$<br>= 938.27 MeV/ $c^2$                                                      | $\frac{1.672621637(83) \times 10^{-27} \text{ kg}}{= 1.00727646677(10) \text{ u}}$      |
| Neutron rest mass          | m <sub>n</sub>                         | $1.6749 \times 10^{-27} \text{ kg} = 1.008665 \text{ u}$<br>= 939.57 MeV/ $c^2$                                                     | $\frac{1.674927211(84) \times 10^{-27} \text{ kg}}{= 1.00866491597(43) \text{ u}}$      |
| Atomic mass unit (1 u)     |                                        | $1.6605 \times 10^{-27} \mathrm{kg} = 931.49 \mathrm{MeV}/c^2$                                                                      | $\frac{1.660538782(83) \times 10^{-27} \text{ kg}}{= 931.494028(23) \text{ MeV}/c^2}$   |

<sup>†</sup> CODATA (3/07), Peter J. Mohr and Barry N. Taylor, National Institute of Standards and Technology. Numbers in parentheses indicate one-standarddeviation experimental uncertainties in final digits. Values without parentheses are exact (i.e., defined quantities).

| Other Useful Data            |                                | The Greek | Alphab | et                   |         |        |      |
|------------------------------|--------------------------------|-----------|--------|----------------------|---------|--------|------|
| Joule equivalent (1 cal)     | 4.186 J                        | Alpha     | А      | α                    | Nu      | Ν      | ν    |
| Absolute zero (0 K)          | -273.15°C                      | Beta      | В      | β                    | Xi      | Ξ      | ξ    |
| Acceleration due to gravity  |                                | Gamma     | Г      | γ                    | Omicron | 0      | 0    |
| at Earth's surface (avg.)    | $9.80 \text{ m/s}^2 (= g)$     | Delta     | Δ      | δ                    | Pi      | П      | π    |
| Speed of sound in air (20°C) | 343 m/s                        | Epsilon   | E      | $\epsilon, \epsilon$ | Rho     | Р      | ρ    |
| Density of air (dry)         | $1.29 \text{ kg/m}^3$          | Zeta      | Z      | ζ                    | Sigma   | Σ      | σ    |
| Earth: Mass                  | $5.98	imes10^{24}\mathrm{kg}$  | Eta       | Н      | η                    | Tau     | Т      | τ    |
| Radius (mean)                | $6.38 \times 10^3 \mathrm{km}$ | Theta     | θ      | θ                    | Upsilon | Y      | υ    |
| Moon: Mass                   | $7.35	imes10^{22}\mathrm{kg}$  | Iota      | Ι      | ι                    | Phi     | Φ      | φ, 9 |
| Radius (mean)                | $1.74 \times 10^3 \mathrm{km}$ | Kappa     | Κ      | κ                    | Chi     | Х      | X    |
| Sun: Mass                    | $1.99	imes10^{30}\mathrm{kg}$  | Lambda    | Λ      | λ                    | Psi     | $\Psi$ | ψ    |
| Radius (mean)                | $6.96 \times 10^5 \mathrm{km}$ | Mu        | Μ      | $\mu$                | Omega   | Ω      | ω    |
| Earth–Sun distance (mean)    | $149.6	imes10^{6}\mathrm{km}$  |           |        |                      | 0       |        |      |
| Earth-Moon distance (mean)   | $384	imes10^3\mathrm{km}$      |           |        |                      |         |        |      |

## Values of Some Numbers

| $\pi = 3.1415927$ | $\sqrt{2} = 1.4142136$ | $\ln 2 = 0.6931472$  | $\log_{10} e = 0.4342945$            |
|-------------------|------------------------|----------------------|--------------------------------------|
| e = 2.7182818     | $\sqrt{3} = 1.7320508$ | $\ln 10 = 2.3025851$ | $1 \text{ rad} = 57.2957795^{\circ}$ |

| Math      | nematical Signs and Sym   | bols                     |                             | Properties of Wate           | er                                              |
|-----------|---------------------------|--------------------------|-----------------------------|------------------------------|-------------------------------------------------|
| x         | is proportional to        | $\leq$                   | is less than or equal to    | Density (4°C)                | $1.000 \times 10^3  \mathrm{kg/m^3}$            |
| =         | is equal to               | $\geq$                   | is greater than or equal to | Heat of fusion (0°C)         | 333 kJ/kg                                       |
| $\approx$ | is approximately equal to | Σ                        | sum of                      |                              | (80 kcal/kg)                                    |
| ¥         | is not equal to           | $\overline{x}$           | average value of $x$        | Heat of vaporization         | 2260 kJ/kg                                      |
| >         | is greater than           | $\Delta x$               | change in x                 | $(100^{\circ}\text{C})^{-1}$ | (539 kcal/kg)                                   |
| $\gg$     | is much greater than      | $\Delta x \rightarrow 0$ | $\Delta x$ approaches zero  | Specific heat (15°C)         | $4186 \mathrm{J/kg} \cdot \mathrm{C}^{\circ}$   |
| <         | is less than              | n!                       | n(n-1)(n-2)(1)              | •                            | $(1.00 \text{ kcal/kg} \cdot \text{C}^{\circ})$ |
| $\ll$     | is much less than         |                          |                             | Index of refraction          | 1.33                                            |

## Average Nuclear Binding Energy per Nucleon



**Periodic Table of the Elements**<sup>§</sup>

| Group                                            | Group<br>II                    |                |                                 |                                    | Tr                              | ansition ]                      | Transition Elements             |                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Group                                                                                          | Group                 | Group                 | Group                   | Group                               |
|--------------------------------------------------|--------------------------------|----------------|---------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------------------------|-------------------------------------|
| $\mathbf{H}^{1}$ <b>1</b><br>1.00794<br>$1s^{1}$ |                                |                |                                 |                                    |                                 |                                 |                                 |                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                       |                       |                         | He 2<br>4.002602<br>1s <sup>2</sup> |
| Li 3<br>6.941                                    | <b>Be</b> 4<br>9.012182        |                | Ato                             | Symbol<br>Atomic Mass <sup>§</sup> |                                 | CI 17<br>35.453                 | - Atomic                        | Atomic Number                   | 5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | <b>B</b> 5<br>10.811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C 6<br>12.0107                                                                                 | N 7<br>14.0067        | <b>O</b> 8<br>15.9994 | F 9<br>18.9984032       | Ne 10<br>20.1797                    |
| 2 <i>s</i> <sup>1</sup>                          | 2s <sup>2</sup>                |                |                                 |                                    | 31                              | 3p <sup>5</sup>                 | - Electro                       | Electron Configuration          | uration              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | $2p^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2p^2$                                                                                         | $2p^3$                | $2p^4$                | 2p <sup>5</sup>         | 2p <sup>6</sup>                     |
| Na 11                                            | Mg 12                          |                |                                 |                                    |                                 |                                 | (outer                          | (outer shells only)             | ly)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | AI 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Si 14                                                                                          | P 15                  | S 16                  | CI 17                   | <b>Ar</b> 18                        |
| 22.98976928 24.3050                              | 24.3050                        |                |                                 |                                    |                                 |                                 |                                 |                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 26.9815386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.0855                                                                                        | 30.973762             | 32.065                | 35.453                  | 39.948                              |
| 3 <i>s</i> <sup>1</sup>                          | 3s <sup>2</sup>                |                |                                 |                                    |                                 |                                 |                                 |                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | $3p^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3p^2$                                                                                         | $3p^3$                | $3p^4$                | 3 <i>p</i> <sup>5</sup> | 3p <sup>6</sup>                     |
| <b>K</b> 19                                      | Ca 20 Si                       | Sc 21          | <b>Ti</b> 22                    | <b>V</b> 23                        | <b>Cr</b> 24                    | <b>Mn</b> 25                    | <b>Fe</b> 26                    | <b>Co</b> 27                    | Ni 28                | <b>Cu</b> 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Zn</b> 30                     | <b>Ga</b> 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ge 32                                                                                          | <b>As</b> 33          | Se 34                 | <b>Br</b> 35            | <b>Kr</b> 36                        |
| 39.0983                                          | 40.078 44                      | 5              | 47.867                          | 50.9415                            | 51.9961                         | 54.938045                       | 55.845                          | 58.933195                       | 58.6934              | 63.546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65.409                           | 69.723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72.64                                                                                          | 74.92160              | 78.96                 | 79.904                  | 83.798                              |
| 4 <i>s</i> <sup>1</sup>                          | 4s <sup>2</sup> 3d             | $3d^{1}4s^{2}$ | $3d^24s^2$                      | $3d^{3}4s^{2}$                     | $3d^{5}4s^{1}$                  | $3d^{5}4s^{2}$                  | $3d^{6}4s^{2}$                  | $3d^{7}4s^{2}$                  | $3d^{8}4s^{2}$       | $3d^{10}4s^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $3d^{10}4s^2$                    | $4p^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $4p^{2}$                                                                                       | $4p^{3}$              | $4p^4$                | 4 <i>p</i> <sup>5</sup> | $4p^{6}$                            |
| <b>Rb</b> 37                                     | Sr 38 Y                        | Y 39           | <b>Zr</b> 40                    | Nb 41                              | Mo 42                           | <b>Tc</b> 43                    | Ru 44                           | <b>Rh</b> 45                    | <b>Pd</b> 46         | <b>Ag</b> 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cd 48                            | <b>In</b> 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Sn</b> 50                                                                                   | <b>Sb</b> 51          | <b>Te</b> 52          | I 53                    | Xe 54                               |
| 85.4678                                          | 87.62 88                       | 88.90585       | 91.224                          | 92.90638                           | 95.94                           | (86)                            | 101.07                          | 102.90550                       | 106.42               | 107.8682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112.411                          | 114.818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.710                                                                                        | 121.760               | 127.60                | 126.90447               | 131.293                             |
| 5s <sup>1</sup>                                  | 5s <sup>2</sup> 4d             | $4d^{1}5s^{2}$ | $4d^2 5s^2$                     | $4d^{4}5s^{1}$                     | $4d^{5}5s^{1}$                  | $4d^{5}5s^{2}$                  | $4d^{7}5s^{1}$                  | $4d^{8}5s^{1}$                  | $4d^{10}5s^{0}$      | $4d^{10}5s^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4d^{10}5s^2$                    | 5 <i>p</i> <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $5p^2$                                                                                         | $5p^3$                | $5p^4$                | 5 <i>p</i> <sup>5</sup> | $5p^6$                              |
| Cs 55                                            | <b>Ba</b> 56                   | 57-71†         | <b>Hf</b> 72                    | <b>Ta</b> 73                       | W 74                            | Re 75                           | <b>Os</b> 76                    | <b>Ir</b> 77                    | <b>Pt</b> 78         | <b>Au</b> 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hg 80                            | <b>TI</b> 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Pb</b> 82                                                                                   | <b>Bi</b> 83          | <b>Po</b> 84          | At 85                   | <b>Rn</b> 86                        |
| 132.9054519 137.327                              | 137.327                        |                | 178.49                          | 180.94788                          | 183.84                          | 186.207                         | 190.23                          | 192.217                         | 195.084              | 196.966569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200.59                           | 204.3833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 207.2                                                                                          | 208.98040             | (209)                 | (210)                   | (222)                               |
| 6 <i>s</i> <sup>1</sup>                          | 6s <sup>2</sup>                |                | 5d <sup>2</sup> 6s <sup>2</sup> | 5d <sup>3</sup> 6s <sup>2</sup>    | $5d^{4}6s^{2}$                  | $5d^{5}6s^{2}$                  | 5d <sup>6</sup> 6s <sup>2</sup> | $5d^{7}6s^{2}$                  | $5d^{9}6s^{1}$       | $5d^{10}6s^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $5d^{10}6s^2$                    | 6p <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6p <sup>2</sup>                                                                                | 6p <sup>3</sup>       | 6p <sup>4</sup>       | 6 <i>p</i> <sup>5</sup> | 6p <sup>6</sup>                     |
| <b>Fr</b> 87                                     | <b>Ra</b> 88 89                | )-103#         | 89-103# Rf 104                  | <b>Db</b> 105                      | Sg 106                          | <b>Bh</b> 107                   | <b>Hs</b> 108                   | <b>Mt</b> 109                   | <b>Ds</b> 110        | Rg 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                       |                       |                         |                                     |
| (223)                                            | (226)                          |                | (267)                           | (268)                              | (271)                           | (272)                           | (277)                           | (276)                           | (281)                | (280)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (285)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                       |                       |                         |                                     |
| $7s^1$                                           | 75 <sup>2</sup>                |                | 6d <sup>2</sup> 7s <sup>2</sup> | 6d <sup>3</sup> 7s <sup>2</sup>    | 6d <sup>4</sup> 7s <sup>2</sup> | 6d <sup>5</sup> 7s <sup>2</sup> | 6d <sup>6</sup> 7s <sup>2</sup> | 6d <sup>7</sup> 7s <sup>2</sup> | $6d^97s^1$           | $6d^{10}7s^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6d <sup>10</sup> 7s <sup>2</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                       |                       |                         |                                     |
|                                                  |                                |                |                                 |                                    |                                 |                                 |                                 |                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                       |                       |                         |                                     |
|                                                  |                                |                | La 57                           | Ce 58                              | <b>Pr</b> 59                    | 09 PN                           | <b>Pm</b> 61                    | <b>Sm</b> 62                    | Eu 63                | <b>Gd</b> 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tb 65                            | Dy 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ho 67                                                                                          | Er 68                 | Tm 69                 | Yb 70                   | Lu 71                               |
| †La                                              | <sup>†</sup> Lanthanide Series |                | L‡                              | 140.116                            | 140.90765                       | 144.242                         |                                 |                                 |                      | and the second sec | 158.92535                        | 162.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 164.93032                                                                                      | 167.259               | 168.93421             | 173.04                  | 174.967                             |
|                                                  |                                |                | 5d <sup>1</sup> 6s <sup>2</sup> | $4f^{1}5d^{1}6s^{2}$               | $4f^{3}5d^{0}6s^{2}$            | $4f^{4}5d^{0}6s^{2}$            | $4f^{5}5d^{0}6s^{2}$            | $4f^{6}5d^{0}6s^{2}$            | $4f^{7}5d^{0}6s^{2}$ | $4f^{7}5d^{1}6s^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $4f^{9}5d^{0}6s^{2}$             | $4f^{10}5d^{0}6s^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \left. $ | $4f^{12}5d^{0}6s^{2}$ | $4f^{13}5d^{0}6s^{2}$ | $4f^{14}5d^{0}6s^{2}$   | $4f^{14}5d^{16}$                    |
|                                                  |                                | L              |                                 |                                    |                                 |                                 |                                 |                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                       |                       |                         |                                     |
|                                                  |                                |                | 6                               | <b>Th</b> 90                       | <b>Pa</b> 91                    | <b>U</b> 92                     | Np 93                           | <b>Pu</b> 94                    | Am 95                | <b>Cm</b> 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Bk</b> 97                     | Cf 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>Es</b> 99                                                                                   | <b>Fm</b> 100         | Md 101                | No 102                  | Lr 103                              |
| ‡Ac                                              | #Actinide Series               | es             | (227)                           | 232.03806 231.03588                | 231.03588                       | 238.0289                        | (237)                           | (244)                           | (243)                | (247)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (247)                            | (251)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (252)                                                                                          | (257)                 | (258)                 | (259)                   | (262)                               |
|                                                  |                                |                | 6d <sup>1</sup> 7s <sup>2</sup> | 6d <sup>2</sup> 7s <sup>2</sup>    | $5f^{2}6d^{1}7s^{2}$            | $5f^{3}6d^{1}7s^{2}$            | $5f^{4}6d^{1}7s^{2}$            | $5f^{6}6d^{0}7s^{2}$            | $5f^{7}6d^{0}7s^{2}$ | $5f^{7}6d^{1}7s^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $5f^{9}6d^{0}7s^{2}$             | $5f^96d^07s^2 \left[ 5f^{10}6d^07s^2 \right] 5f^{11}6d^07s^2 \left[ 5f^{12}6d^07s^2 \right] 5f^{13}6d^07s^2 \left[ 5f^{14}6d^07s^2 \right] 5f^{14}6d^17s^2 \left[ 5f^{14}6d^17s^2 \right] 5f^{14}6d^17s^2 \left[ 5f^{14}6d^17s^$ | $5f^{11}6d^07s^2$                                                                              | $5f^{12}6d^07s^2$     | $5f^{13}6d^07s^2$     | $5f^{14}6d^07s^2$       | $5f^{14}6d^{17}$ .                  |

<sup>§</sup> Atomic mass values averaged over isotopes in percentages they occur on Earth's surface. For many unstable elements, mass of the longest-lived known isotope is given in parentheses. 2006 revisions. (See also Appendix F.) Preliminary evidence (unconfirmed) has been reported for elements 113, 114, 115, 116 and 118.